A Comparison of different Ridge parameters in an Asthma Persistence Prediction model

Ioannis I. Spyroglou, Eleni A. Chatzimichail, E.N. Paraskakis, and Alexandros G. Rigas

Abstract—The purpose of this paper is to investigate the important role of the ridge parameter in a logistic regression model by comparing several different ridge parameters. These are applied in the study of an asthma persistent prediction problem. High collinearity among the explanatory variables leads to the use of a logistic ridge regression model in order to obtain better predictions. The use of different ridge parameters results to different logistic ridge regression models which predict asthma with different accuracies, as far as positive and negative predictive values are concerned. Additionally, the most interesting conclusion in using different ridge parameters for constructing the logistic ridge regression model, is the existence of different factors which are statistically significant, making the asthma persistence prediction problem more complex. For the evaluation of the model, a method which combines bootstrapping and randomized quantile residuals of the estimated models is used.

Keywords—Asthma outcome, Multicollinearity, Logistic Ridge regression, Ridge Parameter, Randomized Quantile Residuals, Bootstrap

I. INTRODUCTION

Multicollinearity is one of the most important matters when the number of the explanatory variables is large and the correlations between them are strong and significant. In order to deal with multicollinearity introduced in 1934 by Frisch [1] a ridge regression model may be used. Ridge regression [2-3] is a shrinkage technique for analyzing data that suffer from significant collinearity between the predictor variables that makes the maximum likelihood approach unstable because the standard errors of the estimated coefficients become very large.

The most difficult task in Ridge regression is to determine the ridge parameter. Hoerl and Kennard proved that when collinearity exists there is always a model for ridge parameter λ >0 for which the MSE is less than the MSE of the

Ioannis Spyroglou is with the Electrical Engineering Department, Democritus University of Thrace, Xanthi, CO 67100 GRRECE (corresponding author to provide phone: +306955954849 ; e-mail: ispyrogl@ee.duth.gr).

Eleni Chatzimichail is with the Electrical Engineering Department, Democritus University of Thrace, Xanthi, CO 67100 GRRECE (e-mail: <u>echatzim@ee.duth.gr</u>).

Emmanouil N. Paraskakis, Prof., is with the Medical School, Democritus University of Thrace, Alexandroupolis, CO 68100 GRRECE (e-mail: eparaska@med.duth.gr).

Alexandros Rigas, Prof., is with the Electrical Engineering Department, Democritus University of Thrace, Xanthi, CO 67100 GRRECE (e-mail: rigas@ee.duth.gr).

unrestricted model [2-3]. Many articles have been proposing different estimates for the ridge parameter [4-13]. Although there are many proposals for using a ridge parameter, most of them are used for linear regression models.

In [14] the authors apply the ridge parameters proposed in [2] and [15] in logistic regression. Also in [16] a number of logistic ridge regression parameters are applied and investigated through a Monte Carlo simulation. In addition the ridge parameter can be estimated by using a cross – validation technique for the calculation of the minimum mean squared error (MSE_{cv}), the mean minus log-likelihood (MML_{cv}) and the mean classification error (MCE_{cv}) [17].

The variance of the estimated regression coefficients is calculated through a bootstrap method [18,26,32] which uses the randomized quantile residuals. This is necessary because there is extra uncertainty due to the large number of explanatory variables. The randomized quantile residuals follow the standard normal distribution and are useful in testing the validity of the model [19].

II. MATERIALS AND METHODS

A. Clinical Data

Data from 148 patients were gathered by the Pediatric Department of the University Hospital of Alexandroupolis, Greece during the period from 2008 to 2010. A group of 148 patients were diagnosed for asthma and were studied prospectively from the 7th to the 14th year of age. The history of each case was obtained by questionnaire and 36 patients were removed from the study due to missing values. A subsequent group of 33 children was used for validation and predictability examination of the ridge regression models. This group of preschool children is used to predict asthma persistence in school age through logistic ridge regression models with different ridge parameters. The new dataset has 18 prognostic factors which have been derived by previous studies [34-36] and they are described in Table I. The 18 variables inevitably will become 23, as the factor "seasonal symptoms" has to become a dummy variable. The encoding of the prognostic factor "seasonal symptoms" is presented in Table II.

Category	Prognostic Factors
Demographic	Age, height, weight, waist's perimeter
Bronchiolitis episodes	Until 3^{rd} year, between $3^{rd} - 5^{th}$ year
Symptoms	Wheezing, cough, allergic rhinitis, allergic conjunctivitis, dyspnea, congestion, runny nose, seasonal symptoms
Pharmaceutical therapy	Antileukotriene, antihistamine, corticosteroids inhaled
Asthma	Diagnosis of asthma (dependent variable), Treatment

TABLE I

The 18 used prognostic factors.

TABLE II

1	2	3	4	5	6		
(none)	(Winter)	(Autumn)	(Spring)	(Summer)	(>2seasons)		
The encoding of "geogenical symptoms"							

The encoding of "seasonal symptoms".

B. Logistic Ridge Regression

In this section the implementation of the logistic ridge regression is presented.

The logistic regression model with the use of the logit link function is:

$$\log\left(\frac{p_i}{1-p_i}\right) = b\boldsymbol{x}_i,\tag{1}$$

which is equivalent to:

$$p_i = \frac{\exp(b\boldsymbol{x}_i)}{\{1 + \exp(b\boldsymbol{x}_i)\}},\tag{2}$$

where b is the parameter vector and x_i is a data matrix of explanatory variables.

In order to estimate *b* the maximum likelihood method is applied. The estimates of the parameters b_j , j=1,...,k are obtained by maximizing the log – likelihood which is:

$$l(b|y) = \log L(b|y), \tag{3}$$

$$l(b|y) = \sum_{i=1}^{n} \left[y_i \log \left[\frac{1}{1 + \exp(-x_i^T b)} \right] + (1 - y_i) \log \left[1 - \frac{1}{1 + \exp(-x_i^T b)} \right] \right]$$
(4)

As it was mentioned before when multicollinearity exists, in order to obtain more stable parameter estimates the logistic ridge regression is used. In order to improve further the estimation procedure, a penalized likelihood function is implemented given by [17]:

$$l^{\lambda}(b|y) = l(b|y) - \lambda ||b||^{2} = l(b|y) - \lambda R,$$
(5)

where, R is a penalty term of the following form [33]:

$$R = \sum_{j=0}^{k-1} (b_{j+1} - b_j)^2.$$
(6)

It is obvious that in this approach a penalty term is included that contains the ridge parameter λ . The penalty term improves the properties of the estimated parameters b in (5). The computation of the estimates of the penalized parameters \hat{b}^{λ} is based on the Newton – Raphson's iterative algorithm. In order to be able to use the relation (5), a transformation of the parameters of the unrestricted logistic model is required.

Therefore:

$$b_1 x_{i1} + b_2 x_{i2} + \dots + b_k x_{ik} = \gamma_1 z_{i1} + \gamma_2 z_{i2} + \dots + \gamma_k z_{ik}, \quad (7)$$

where

$$\gamma_1 = b_1, \dots, \ \gamma_j = b_j - b_{j-1}, \ \ j = 2, \dots, k$$
 (7.1)

and $z_{ij} = \sum_{u=j}^{k} x_{iu}$ (7.2). Thus, the penalized likelihood function can be written as follows:

$$l^{\lambda}(\gamma|y) = l(\gamma|y) - \lambda \|\gamma\|^2.$$
(8)

Applying the procedure described in [17,18] we obtain

$$\hat{\gamma}^{\lambda} = \{ \Omega(\gamma) + 2\lambda I \}^{-1} \{ U(\gamma) + \gamma \Omega(\gamma) \}.$$
(9)

where $\Omega(\gamma) = \mathbf{z}^T \mathbf{W} \mathbf{z}$, $U(\gamma) = \sum_{i=1}^n z_i \{y_i - p_i\}$ and γ are the estimated coefficients of the unrestricted model.

C. The ridge parameter

When a ridge regression model is implemented, the choice of the ridge parameter is of great importance. The most classical and usually used ridge parameter is the one proposed by Hoerl and Kennard [2-3],

$$\lambda_1 = \lambda_{HK1} = \frac{s^2}{\hat{a}_{max}^2}$$

where \hat{a}_{max}^{2} is the maximum element of δb_{ML} , where δ is the eigenvector of X'WX, b_{ML} are the estimates of the unrestricted maximum likelihood and

$$s^{2} = \frac{(y - \hat{y})^{T}(y - \hat{y})}{n - p - 1}$$

Another version of the previous ridge parameter is proposed by [14]:

$$\lambda_2 = \lambda_{SRW} = \frac{1}{\hat{a}_{max}^2}$$

Moreover, two other ridge parameters discussed in [8] are given by:

$$\lambda_{3} = \lambda_{GM} = \frac{s^{2}}{(\prod_{i=1}^{p} \hat{a}_{i}^{2})^{\frac{1}{p}'}}$$

and

$$\lambda_4 = \lambda_{MED} = Median\left(\frac{s^2}{\hat{a}_i^2}\right), i = 1, 2, ..., p$$

Also, Alkhamisi et.al proposed the following ridge parameter [12]:

$$\lambda_{5} = \lambda_{AL} = \max\left[\frac{t_{i}s^{2}}{(n-p-1)s^{2} + t_{i}\hat{a_{i}}^{2}}\right]$$

where t_i are the eigenvalues of X'X matrix.

Furthermore, one way of selecting an appropriate Ridge Parameter is the process of Cross Validation. In this direction it is possible to perform an estimate of the mean squared error of the cross validation set, which can be minimized to obtain the Ridge parameter. The prediction errors that are widely used in accordance with [17], are:

(a) The mean classification error

$$\begin{split} \mathsf{MCE}_{\mathsf{cv}} &= \frac{1}{n} \sum_{i} \mathsf{Y}_{i} \left[\hat{p}_{i}(X_{i}) < \frac{1}{2} \right] + (1 - \mathsf{Y}_{i}) \left[\hat{p}_{(i)}(X_{i}) > \frac{1}{2} \right] \\ &+ \frac{1}{2} \left[\hat{p}_{(i)}(X_{i}) = \frac{1}{2} \right] \end{split}$$

where if the proposition inside [] is true then it takes the value 1 and if it is false takes the value 0.

(b) The mean squared error

$$MSE_{cv} = \frac{1}{n} \left(\sum_{i} \{ Y_i - \hat{p}_{(i)}(X_i) \}^2 \right)$$

(c) and the mean minus log – likelihood

$$MML_{cv} = -\frac{1}{n} \sum_{i} \left[Y_i \log \hat{p}_{(i)}(X_i) + (1 - Y_i) \log\{1 - \hat{p}_{(i)}(X_i)\} \right]$$

D. Residuals and bootstrapping

A usual problem that occurs in logistic regression is the validity examination of the model based on the residuals. In the case of logistic regression with binary response, the Pearson residuals which are defined by $r_{p,i} = (y_i - \hat{p}_i)/\sqrt{\hat{p}_i(1-\hat{p}_i)}$, i = 1, ..., n and the deviance residuals which are defined by, $r_D = sign\{y_i - \hat{p}_i\}$ are far from normal and as a result are not capable to give us any information about the validity of the model. More details about the residuals and their use are presented in [30].

For that reason the randomized quantile residuals proposed by Dunn and Smith are used [19]. The randomized quantile residuals are defined as follows:

Let $F(y_i; p_i) = P(Y_i \le y_i) = \sum_{m=0}^{|y_i|} p_i^m (1 - p_i)^{1-m}$ be the cumulative binomial distribution of the ith binary response, and $|y_i|$ is the greatest integer less than or equal to y_i , i.e. the 'floor' under y_i . Let also

$$a_i = \lim_{y \uparrow y_i} F(y; \widehat{p}_i)$$
 and $b_i = F(y; \widehat{p}_i)$.

Then the randomized quantile residuals for a logistic regression model are defined by

$$r_{rq,i} = \Phi^{-1}\{u\},\tag{11}$$

where $\Phi(\cdot)$ is the cumulative distribution function of the standard normal, and u_i is a uniform random variable on the interval $(a_i, b_i]$.

These residuals [19] can be used for any discrete distributed response. Thus, the validity of the model can now be tested by using goodness of fit tests for the normality of $r_{rq,i}$. A very commonly used method to test the null hypothesis that the randomized quantile residuals follow a standard normal distribution i.e. $r_{rq} \sim N(0, I)$ is the Anderson – Darling test [25].

Also the Q-Q plot of the randomized quantile can be a mean for checking the validity of the model. A method for constructing pointwise $a \times 100\%$ rejection regions around the Q-Q plot of any random sample is proposed in [18] by using bootstrapping.

III. RESULTS

The correlations between some variables are very strong and statistically significant, indicating the presence of multicollinearity. The condition indices also reveal that multicollinearity exists [18,29].

Thus the logistic ridge regression is applied for a ridge parameter λ =0 to λ =1. Furthermore it is important to mention that when collinearity exists there is always a model for λ >0 for which the MSE is less than the MSE of the unrestricted model [3,17].

For the calculation of p – values the following statistic is used:

$$T_{\lambda} = \frac{\hat{b}_{j}^{\lambda}}{se(\hat{b}_{j}^{\lambda})} \tag{10}$$

The standard errors are obtained by a bootstrap procedure using the randomized quantile residuals that is described in [18]. Thereafter we assume that under the null hypothesis $T_{\lambda} \sim N(0,1)$ to test the significance of the estimated ridge coefficients [20].

The results of using different approaches for the ridge parameter calculation are shown in TABLE III-X (Appendix).

Now, we would like to examine the performance of these models in new real data. These new data refer to 33 new patients and were collected also by questionnaire in a period after 2010.

Based on the equation:

$$\hat{p}_{ridge} = \frac{1}{1 + \exp(-X_{new} * \hat{b}_{ridge})},$$

a prediction for the diagnosis of a new patient can be found. The positive predicted value, the negative predicted value and the accuracy of this model are estimated using false positive (FP), false negative (FN), true positive (TP), and true negative (TN) values. The positive predictive value (PPV) of a test is defined as the proportion of people with a positive test result who actually have the disease. The negative predictive value (NPV) of a test is the proportion of people with a negative test result who do not have disease [21]. The test set consists of the new 33 patients and the 11 patients which were used for the cross – validation test.

$$Positive Pred.Value = \frac{N_{TP}}{N_{TP} + N_{FP}} \times 100,$$

$$Negative Pred.Value = \frac{N_{TN}}{N_{TN} + N_{FN}} \times 100,$$

$$Accuracy = \frac{N_{TP} + N_{TN}}{N_{TP} + N_{TN} + N_{FP} + N_{FN}} \times 100.$$
(12)

All the above are statistical measures of the performance of a binary classification test.

Those measures are very useful and give us important information about a patient. For example if a PPV of a disease prediction model is 90% then a patient with a positive test has a chance of 90% having the particular disease [21].

In the following TABLE XI are described all the statistical measures for the performance of the models including the mean squared error of the data that were used for fitting the models.

Ridge	MSE	Accuracy	PPV	NPV	AIC
Parameters		(%)	(%)	(%)	
$\lambda_1 = 0.000456$	0.0813	72.73	81.82	63.64	574.5633
$\lambda_2 = 0.0159$	0.0857	86.36	88.46	83.33	319.4652
$\lambda_3 = 0.0018$	0.0849	75	82.60	66.67	487.6483
$\lambda_4 = 0.012$	0.0847	77.27	83.33	70	512.1119
$\lambda_5 = 0.0541$	0.0846	84.09	88	78.95	409.9047
$\lambda_6 = 0.0261$	0.0884	93.18	96.15	88.89	276.1508
$\lambda_7 = 0.0160$	0.0850	86.36	88.46	83.33	341.1905
$\lambda_8 = 0.0123$	0.0858	86.36	88.46	83.33	319.0086

TABLE XI

The results show that the most significant explanatory variable that appears in all models is the waist's perimeter. Waist's perimeter is studied and also presented as a significant variable in [22-23] and that enhances the fact that there is a strong relation between asthma and obesity.

One other interesting matter is that the model of TABLE III (Appendix) has many different significant variables compared to the other models but it also has the smallest predictive accuracy. That is explained if we perform a validity test using the QQ-plot of the randomized quantile residuals with the use of the method described in [18]. This method uses the bootstrap resampling of randomized quantile residuals so we can calculate the 5% rejection regions around the QQ-plot. This is implemented because the large number of the estimated parameters adds extra uncertainty.

More specific, we obtain estimates of \hat{p}_i , and randomized quantile residuals with the use of logistic ridge regression. Then we apply the bootstrap 2000 times in randomized quantile residuals and then we apply again the logistic ridge regression with an assumption made in [24,37] 2000 times using as response the summations $\hat{p}^T + r_{rq,t}^T$. Finally from the 2000 sets of estimated response variables \hat{p}_t , t = 1, ..., 2000,

we calculate 2000 new sets of randomized quantile residuals which allows us to construct $a \times 100\%$ rejection regions around the Q-Q plot of the randomized quantile residuals.

Here it is important to mention that the standard errors of the estimated coefficients \hat{b}^{λ} were obtained by finding the standard deviation of the 2000 bootstrapped samples $\hat{b}_{1}^{\lambda}, ..., \hat{b}_{23}^{\lambda}$.

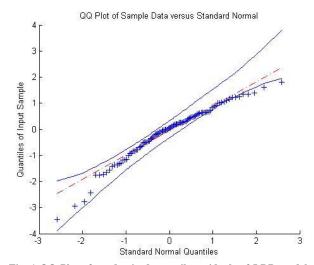


Fig. 1 QQ Plot of randomized quantile residuals of LRR model with the use of $\lambda_1 = \lambda_{HK1}$ versus Standard Normal

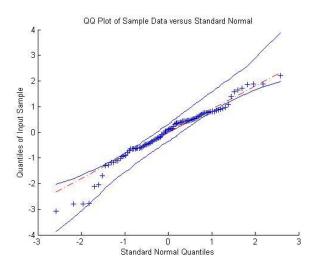


Fig. 2 QQ Plot of randomized quantile residuals of LRR model with the use of $\lambda_3 = \lambda_{GM}$ versus Standard Normal

Figures 1 and 2 show the Q-Q plot of the randomized quantile residuals of the fitted logistic ridge model with λ_{HK1} and λ_{GM} denoted both with +. The 5% rejection regions were computed by the procedure described above after 2000 bootstrap simulations. It is observed that 7 (6.93%) and 9 (8.91%) of the 101 residuals lie outside the 5% rejection regions respectively and generally the Q-Q plots present some deviations from normality.

In addition, the Anderson-Darling test gives the value 1.0559 with a p-value 0.0084 and 1.0738 with a p-value 0.0076 respectively. Therefore, the null hypothesis that the randomized quantile residuals follow an approximate standard normal distribution must be rejected. This suggests that the

fitted models are invalid. The rest of the models are valid and this is proved with the use of the same procedure for checking the validity.

It is also interesting the fact that the models which have smaller MSE have larger accuracy and the opposite. This is probably a result of overfitting. This is also the reason that the models with smaller MSEs are not valid according to our validity test with the use of randomized quantile residuals.

Finally we may use the Akaike Information Criterion in order to determine which model is the best for asthma persistence prediction. AIC is defined as [28]:

$$AIC = nlog(RSS) + 2df$$

where RSS is the residual sum of squares and df is defined as:

$$df = \sum_{j=1}^{p} \frac{d_j^2}{d_j^2 + \lambda}$$

where d_j , j = 1, ..., p is the vector of singular values after the singular value decomposition (SVD) of **X** [28]

The Akaike Information criterion of each model is presented in TABLE XI.

IV. CONCLUSION

A complete ridge regression study demands the use of many different ridge parameters and a number of criteria in order to obtain the best model. In this paper the proposed models for ridge parameters λ_2 , λ_5 , λ_6 , λ_7 , λ_8 exhibit high accuracy and small mean squared errors. The best model according to four different criteria is the one in which the ridge parameter is calculated by minimizing the mean squared error through cross – validation. The values of the four criteria are:

Accuracy: 93.18% PPV: 96.15%, NPV: 88.89% and AIC: 276.15.

For future research, a very interesting study would be to make a comparison of the ridge regression models for asthma prediction, with other methods used to deal with multicollinearity such as partial least squares regression, principal component analysis and Bayesian logistic regression. A comparison with artificial intelligence methods such as artificial neural networks [27] can also be included.

V.APPENDIX

	Estimates					
Covariates	Parameter Estimates	T		p- values		
Age	-0.1216	0.1825	-0.6664	0.5052		
Treatment	-0.5972	0.9194	-0.6496	0.5160		

	Estimates					
Covariates	Parameter Estimates	Standard Errors	Tλ	p- values		
Corticosteroids inhaled	1.2599	0.9495	1.3269	0.1845		
Antileukotriene	-0.5388	1.1484	-0.4692	0.6390		
Antihistamine	-1.9814	1.2809	-1.5469	0.1219		
Height	-3.1837	2.1750	-1.4638	0.1433		
Weight	0.1107	0.0394	2.8084	0.0050		
Waist's perimeter	-0.1331	0.0348	-3.8224	0.0001		
Allergic rhinitis	0.7402	1.0964	0.6751	0.4996		
Allergic conjunctivitis	-2.8051	1.3000	-2.1579	0.0309		
Runny nose	2.4870	1.1636	2.1373	0.0326		
Congestion	0.9241	1.0703	0.8633	0.3879		
Cough	1.4526	1.1453	1.2683	0.2047		
Wheezing	2.4733	1.1754	2.1042	0.0354		
Dyspnea	1.1429	1.0215	1.1189	0.2632		
Seasonal symptoms (none)	5.7369	2.1801	2.6315	0.0085		
Seasonal symptoms (winter)	7.7949	2.3360	3.3369	0.0008		
Seasonal symptoms (autumn)	5.2621	2.3813	2.2098	0.0271		
Seasonal symptoms (spring)	8.5665	2.4856	3.4464	0.0006		
Seasonal symptoms (summer)	4.2801	2.5134	1.7029	0.0886		
Seasonal symptoms (>2 seasons)	6.9742	2.3594	2.9559	0.0031		
Bronchiolitis episodes until 3 rd year	-0.1539	0.1561	-0.9858	0.3242		
Bronchiolitis episodes b/w 3 rd – 5 th year	0.2086	0.1350	1.5447	0.1224		

TABLE III: The logistic ridge regression model for λ_1 which is equal to 0.000456.

TABLE IV

	Estimates						
Covariates	Parameter Estimates	Standard Errors	T_{λ}	p- values			
Age	0.0250	0.1502	0.1665	0.8678			
Treatment	0.4897	0.6046	0.8099	0.4180			
Corticosteroids inhaled	0.9499	0.6217	1.5279	0.1265			
Antileukotriene	-0.4523	0.8828	-0.5123	0.6084			
Antihistamine	-0.0078	0.9693	-0.0081	0.9936			
Height	0.7008	1.2574	0.5573	0.5773			
Weight	-0.0010	0.0319	-0.0301	0.9760			
Waist's perimeter	-0.0759	0.0288	-2.6364	0.0084			
Allergic rhinitis	-0.0272	0.8375	-0.0325	0.9741			
Allergic conjunctivitis	-0.9199	0.9208	-0.9991	0.3177			
Runny nose	0.6202	0.8670	0.7154	0.4744			

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING

	Estimates					
Covariates	$\begin{array}{c c} Parameter \\ Estimates \end{array} \begin{array}{c} Standard \\ Errors \end{array} T_{\lambda} \end{array}$		T_{λ}	p- values		
Congestion	1.1530	0.8020	1.4378	0.1505		
Cough	1.7631	0.8653	2.0375	0.0416		
Wheezing	1.7896	0.8625	2.0750	0.0380		
Dyspnea	1.1127	0.8009	1.3893	0.1647		
Seasonal symptoms (none)	1.4128	1.2993	1.0874	0.2769		
Seasonal symptoms (winter)	1.4186	1.4910	0.9514	0.3414		
Seasonal symptoms (autumn)	0.3989	1.4973	0.2664	0.7899		
Seasonal symptoms (spring)	1.2300	1.6099	0.7640	0.4449		
Seasonal symptoms (summer)	0.2360	1.6090	0.1467	0.8834		
Seasonal symptoms (>2 seasons)	1.4584	1.4819	0.9842	0.3250		
Bronchiolitis episodes until 3 rd year	-0.2146	0.1337	-1.6047	0.1086		
Bronchiolitis episodes b/w 3 rd - 5 th year	0.1461	0.1137	1.2852	0.1987		

	Estimates						
Covariates	Parameter Estimates	Standard Errors	T_{λ}	p-values			
Seasonal symptoms (spring)	4.6342	3.0200	1.5345	0.1249			
Seasonal symptoms (summer)	1.2966	3.0580	0.4240	0.6716			
Seasonal symptoms (>2 seasons)	3.6561	2.9673	1.2321	0.2179			
Bronchiolitis episodes until 3 rd year	-0.1791	0.1597	-1.1214	0.2621			
Bronchiolitis episodes b/w 3 rd –	0.1968	0.1389	1.4172	0.1564			

SolutionSolutionSolutionSolution 5^{th} yearTABLE V: The logistic ridge regression model for λ_3 which is equal to0.0018.

TABLE VI

TABLE VI								
		1						
Covariates	Parameter Estimates	Standard Errors	T_{λ}	p-values				
Age	-0.1227	0.2039	-0.6015	0.5475				
Treatment	-0.3004	1.4298	-0.2101	0.8336				
Corticosteroids inhaled	1.2330	1.5874	0.7768	0.4373				
Antileukotriene	-0.5896	1.3675	-0.4312	0.6663				
Antihistamine	-1.6547	1.7057	-0.9701	0.3320				
Height	-0.6974	3.1056	-0.2245	0.8223				
Weight	0.0760	0.0465	1.6328	0.1025				
Waist's perimeter	-0.1243	0.0394	-3.1576	0.0016				
Allergic rhinitis	0.5572	1.3072	0.4262	0.6699				
Allergic conjunctivitis	-2.3310	1.5145	-1.5391	0.1238				
Runny nose	2.0192	1.3832	1.4598	0.1443				
Congestion	1.0387	1.2286	0.8454	0.3979				
Cough	1.6524	1.2987	1.2723	0.2033				
Wheezing	2.3673	1.3991	1.6921	0.0906				
Dyspnea	0.9937	1.2202	0.8144	0.4154				
Seasonal symptoms (none)	3.4249	2.9862	1.1469	0.2514				
Seasonal symptoms (winter)	4.9009	3.1197	1.5709	0.1162				
Seasonal symptoms (autumn)	2.7220	3.4452	0.7901	0.4295				
Seasonal symptoms (spring)	5.5520	3.1196	1.7797	0.0751				
Seasonal symptoms (summer)	1.8582	3.2042	0.5799	0.5620				
Seasonal symptoms (>2 seasons)	4.3439	3.0055	1.4453	0.1484				
Bronchiolitis episodes until 3 rd year	-0.1722	0.1712	-1.0059	0.3145				
Bronchiolitis episodes b/w 3 rd – 5 th year	0.2018	0.1475	1.3678	0.1714				

TABLE VI: The logistic ridge regression model for λ_4 which is equal to 0.012.

TA	BLE IV:	The	logistic	ridge	regression	model f	for λ_2	whie	ch is equ	ual
to 0.01	.59.		-	_	-		_		_	

TABLE V

	Estimates					
Covariates	Parameter Estimates	Standard Errors	T_{λ}	p-values		
Age	-0.1124	0.2116	-0.5315	0.5951		
Treatment	-0.1510	1.3318	-0.1134	0.9097		
Corticosteroids inhaled	1.2057	1.4395	0.8376	0.4023		
Antileukotriene	-0.6129	1.3353	-0.4590	0.6463		
Antihistamine	-1.4135	1.5358	-0.9204	0.3574		
Height	-0.1232	3.1444	-0.0392	0.9687		
Weight	0.0628	0.0437	1.4396	0.1500		
Waist's perimeter	-0.1193	0.0372	-3.2080	0.0013		
Allergic rhinitis	0.4453	1.3051	0.3412	0.7329		
Allergic conjunctivitis	-2.0926	1.5382	-1.3604	0.1737		
Runny nose	1.8047	1.3142	1.3732	0.1697		
Congestion	1.0902	1.1989	0.9093	0.3632		
Cough	1.7637	1.3620	1.2950	0.1953		
Wheezing	2.2655	1.3315	1.7015	0.0888		
Dyspnea	0.9703	1.1591	0.8371	0.4025		
Seasonal symptoms (none)	2.8558	2.8203	1.0126	0.3113		
Seasonal symptoms (winter)	4.0640	2.8922	1.4051	0.1600		
Seasonal symptoms (autumn)	2.0847	3.2066	0.6501	0.5156		

Estimates					
Covariates	Parameter Estimates	Standard Errors	T _λ	p- values	
Age	-0.0540	0.2041	-0.2645	0.7914	
Treatment	0.2506	1.2937	0.1937	0.8464	
Corticosteroids inhaled	1.0861	1.4304	0.7593	0.4477	
Antileukotriene	-0.6135	1.3484	-0.4550	0.6491	
Antihistamine	-0.5924	1.4285	-0.4147	0.6784	
Height	0.6537	3.1017	0.2108	0.8331	
Weight	0.0278	0.0470	0.5926	0.5534	
Waist's perimeter	-0.0999	0.0394	-2.5339	0.0113	
Allergic rhinitis	0.1472	1.2997	0.1132	0.9098	
Allergic conjunctivitis	-1.4431	1.5195	-0.9497	0.3423	
Runny nose	1.1841	1.3081	0.9052	0.3654	
Congestion	1.1818	1.1882	0.9946	0.3199	
Cough	1.9106	1.4340	1.3324	0.1827	
Wheezing	1.9913	1.3684	1.4552	0.1456	
Dyspnea	0.9835	1.1951	0.8230	0.4105	
Seasonal symptoms (none)	1.9139	2.9094	0.6578	0.5106	
Seasonal symptoms (winter)	2.4033	2.9500	0.8147	0.4153	
Seasonal symptoms (autumn)	0.9678	3.3513	0.2888	0.7727	
Seasonal symptoms (spring)	2.5807	3.1280	0.8250	0.4094	
Seasonal symptoms (summer)	0.4833	3.1612	0.1529	0.8785	
Seasonal symptoms (>2 seasons)	2.3315	3.0638	0.7610	0.4467	
Bronchiolitis episodes until 3 rd year	-0.2015	0.1689	-1.1927	0.2330	
Bronchiolitis episodes b/w 3 rd – 5 th year	0.1767	0.1427	1.2381	0.2157	

	Estimates				
Covariates	Parameter Estimates	Standard Errors	T_{λ}	p-values	
Congestion	1,096703	0,5424	2,0220	0,0432	
Cough	1,640577	0,5871	2,7942	0,0052	
Wheezing	1,719255	0,5874	2,9271	0,0034	
Dyspnea	1,18429	0,5962	1,9865	0,0470	
Seasonal symptoms (none)	1,26928	0,7360	1,7246	0,0846	
Seasonal symptoms (winter)	1,148824	0,8505	1,3507	0,1768	
Seasonal symptoms (autumn)	0,273617	0,8385	0,3263	0,7442	
Seasonal symptoms (spring)	0,856916	0,9088	0,9429	0,3457	
Seasonal symptoms (summer)	0,216933	0,8830	0,2457	0,8059	
Seasonal symptoms (>2 seasons)	1,15655	0,8174	1,4149	0,1571	
Bronchiolitis episodes until 3 rd year	-0,21639	0,1089	-1,9866	0,0470	
Bronchiolitis episodes $b/w 3^{rd} - 5^{th}$ year	0,132402	0,0932	1,4212	0,1553	

TABLE VIII: The parameter estimates of the logistic ridge model for
the minimum MSEcv. The minimum MSEcv is derived for $\lambda_6=0.0261$ and
is equal to 0.034.

TABLE IX

	Estimates						
Covariates	Parameter Estimates	Standard Errors	T_{λ}	p-values			
Age	0.0062	0.1357	0.0460	0.9633			
Treatment	0.4527	0.7109	0.6368	0.5243			
Corticosteroids inhaled	0.9812	0.7369	1.3315	0.1830			
Antileukotriene	-0.5055	0.8132	-0.6216	0.5342			
Antihistamine	-0.1040	0.8708	-0.1195	0.9049			
Height	0.7314	1.3985	0.5230	0.6010			
Weight	0.0050	0.0302	0.1646	0.8693			
Waist's perimeter	-0.0815	0.0262	-3.1141	0.0018			
Allergic rhinitis	0.0021	0.7788	0.0027	0.9978			
Allergic conjunctivitis	-1.0293	0.8743	-1.1774	0.2391			
Runny nose	0.7381	0.8086	0.9128	0.3613			
Congestion	1.1721	0.7242	1.6184	0.1056			
Cough	1.8179	0.8107	2.2423	0.0249			
Wheezing	1.8300	0.8252	2.2176	0.0266			
Dyspnea	1.0757	0.7490	1.4362	0.1509			
Seasonal symptoms (none)	1.5054	1.3621	1.1052	0.2691			
Seasonal symptoms (winter)	1.5978	1.4433	1.1070	0.2683			
Seasonal symptoms (autumn)	0.4939	1.5525	0.3181	0.7504			
Seasonal symptoms (spring)	1.4782	1.5721	0.9403	0.3471			
Seasonal symptoms (summer)	0.2629	1.5506	0.1696	0.8654			

TABL	E VII: The	logistic ridge	regression	mode	for λ_5	whic	h is	equa
to 0.0541.			-		-			_

TABLE VIII							
	Estimates						
Covariates	Parameter Estimates	Standard Errors	T_{λ}	p-values			
Age	0,059821	0,1221	0,4900	0,6241			
Treatment	0,531238	0,4817	1,1028	0,2701			
Corticosteroids inhaled	0,889768	0,4942	1,8002	0,0718			
Antileukotriene	-0,32763	0,5650	-0,5799	0,5620			
Antihistamine	0,111097	0,6674	0,1665	0,8678			
Height	0,600211	0,7353	0,8163	0,4143			
Weight	-0,01082	0,0276	-0,3925	0,6947			
Waist's perimeter	-0,06579	0,0216	-3,0455	0,0023			
Allergic rhinitis	-0,06907	0,5733	-0,1205	0,9041			
Allergic conjunctivitis	-0,72709	0,5819	-1,2494	0,2115			
Runny nose	0,429069	0,6068	0,7071	0,4795			

	Estimates					
Covariates	Parameter Estimates	Standard Errors	T_{λ}	p-values		
Seasonal symptoms (>2 seasons)	1.6343	1.4832	1.1018	0.2705		
Bronchiolitis episodes until 3 rd year	-0.2127	0.1269	-1.6769	0.0936		
Bronchiolitis episodes b/w 3 rd – 5 th year	0.1537	0.1102	1.3940	0.1633		

TABLE IX: The parameter estimates of the logistic ridge model for the minimum MMLcv. The minimum MMLcv is derived for λ_7 =0.0160 and is equal to 0.1693.

IABLE X Estimates							
Covariates	Parameter						
	Estimates	Errors	Tλ	p-values			
Age	-0.1216	0.1771	0.1440	0.8855			
Treatment	-0.5972	0.9529	0.5148	0.6067			
Corticosteroids inhaled	1.2599	1.0058	0.9436	0.3454			
Antileukotriene	-0.5388	1.0843	-0.4157	0.6777			
Antihistamine	-1.9814	1.1873	-0.0047	0.9963			
Height	-3.1837	2.3980	0.2918	0.7704			
Weight	0.1107	0.0412	-0.0271	0.9784			
Waist's perimeter	-0.1331	0.0333	-2.2774	0.0228			
Allergic rhinitis	0.7402	1.0491	-0.0266	0.9788			
Allergic conjunctivitis	-2.8051	1.1948	-0.7676	0.4427			
Runny nose	2.4870	1.0590	0.5828	0.5600			
Congestion	0.9241	0.9924	1.1612	0.2456			
Cough	1.4526	1.0918	1.6134	0.1067			
Wheezing	2.4733	1.0963	1.6315	0.1028			
Dyspnea	1.1429	0.9810	1.1354	0.2562			
Seasonal symptoms (none)	5.7369	2.3044	0.6121	0.5405			
Seasonal symptoms (winter)	7.7949	2.3937	0.5908	0.5547			
Seasonal symptoms (autumn)	5.2621	2.6060	0.1522	0.8790			
Seasonal symptoms (spring)	8.5665	2.5260	0.4845	0.6280			
Seasonal symptoms (summer)	4.2801	2.5459	0.0925	0.9263			
Seasonal symptoms (>2 seasons)	6.9742	2.4144	0.6022	0.5471			
Bronchiolitis episodes until 3 rd year	-0.1539	0.1495	-1.4359	0.1510			
Bronchiolitis episodes b/w 3 rd – 5 th year	0.2086	0.1260	1.1582	0.2468			

TABLE X

TABLE X: The parameter estimates of the logistic ridge model for the minimum MCEcv. The minimum MCEcv is derived for λ_8 = 0.0123 and is equal to 0.

Volume 10, 2016

REFERENCES

- R. Frisch, Statistical Confluence Analysis by Means of Complete Regression Systems. Oslo: University Institute of Economics, Publication no. 5, 1934.
- [2] A.E. Hoerl and R. W. Kennard, "Ridge Regression: Applications to nonorthogonal problems," *Technometrics 1*\, vol. 12, no. 6, 1970.
- [3] A.E. Hoerl and R.W. Kennard, "Ridge Regression: Biased estimates for nonorthogonal problems," *Technometrics*, vol. 12, no.55, pp.55–67 1970.
- [4] McDonald, G. C., Galarneau, D. I. A Monte Carlo evaluation of some ridge-type estimators. J. Amer. Statist. Assoc. vol.70, pp.407–416, 1975
- [5] Lawless, J. F., Wang, P.. A simulation study of ridge and other regression estimators. Commun. Statist. Theor. Meth. vol.5, pp.307–323, 1976.
- [6] Saleh, A. K. M., Kibria, B. M. G. Performance of some new preliminary test ridge regression and their properties. *Commun. Statist. Theor. Meth.* vol.22, pp.2747–2764, 1993.
- [7] Haq, M. S., Kibria, B. M. G. A shrinkage estimator for the restricted linear regression model: Ridge regression approach. J. Appl. Statist. Sci. 3:301–316, 1996.
- [8] Kibria, B. M. G. Performance of some new ridge regression estimators. Commun. Statist. Theor. Meth. 32:419–435, 2003.
- [9] Kibria, B. M. G. Performance of the shrinkage preliminary test ridge regression estimators based on the conflicting of W, LR and LM tests. J. Statist. Computat. Simul. 74:793–810, 2004.
- [10] Kibria, B. M. G., Saleh, A. K. M. E. Performance of positive rule estimator in the ill-conditioned gaussian regression model. Calcutta Statist. Assoc. Bull. 55:211–241, 2004.
- [11] Khalaf, G., Shukur, G. Choosing ridge parameters for regression problems. Commun. Statist. Theor. Meth. 34:1177–1182, 2005.
- [12] Alkhamisi, M. A., Khalaf, G., Shukur, G. Some modifications for choosing ridge parameter. Commun. Statist. Theor. and Meth. 35:1–16, 2006.
- [13] Muniz, G., Kibria, B. M. G. On some ridge regression estimators: An empirical comparison. Commun. Statist. Simul. Computat. 38:621–630, 2009.
- [14] R. L. Schaefer, L.D. Roi, and R.A. Wolfe, "A ridge logistic estimator," *Communications in Statistics - Theory and Methods*, vol. 13, no. 1, pp. 99–113, 1984.
- [15] Hoerl, A. E., Kennard, R. W., Baldwin, K. F. Ridge regression: Some simulation. Commun. Statist. Theor. Meth. 4:105–123, 1975.
- [16] Kristofer Månsson & Ghazi Shukur, On Ridge Parameters in Logistic Regression, *Communications in Statistics - Theory and Methods*, 40:18, 3366-3381, 2011, DOI: 10.1080/03610926.2010.500111.
- [17] S. Le Cessie and J. C. Van Houwlingen, "Ridge Estimators in Logistic Regression," *Journal of the Royal Statistical Society*, Series C (Applied Statistics), vol. 41, no. 1, pp. 191–201, 1992.
- [18] Ioannis I. Spyroglou, Eleni A. Chatzimichail, E.N. Spanou, E. Paraskakis, and Alexandros G. Rigas, "Ridge regression and bootstrapping in asthma prediction," in New Developments in Pure and Applied Mathematics INASE Conference proceedings (MMSSE '15), Vienna, Austria, pp. 44-48, March 2015.
- [19] P. Dunn and G. K. Smyth, "Randomized Quantile Residuals," J. Computat. Graph. Statist, vol. 5, pp. 236–244, 1996.
- [20] Cule et al., "Significance testing in ridge regressionfor genetic data," BMC Bioinformatics, 12:372, 2011.
- [21] Akobeng, A. K.. Understanding diagnostic tests 1: sensitivity, specificity and predictive values. Acta paediatrica, 96(3), 338-341, 2007.
- [22] McGarry ME, Castellanos E, Thakur N, Oh SS, Eng C, Davis A, Meade K, LeNoirMA, Avila PC, Farber HJ, Serebrisky D, Brigino-Buenaventura E, Rodriguez-Cintron W, Kumar R, Bibbins-Domingo K, Thyne SM, Sen S, Rodriguez-Santana JR, Borrell LN,Burchard EG. Obesity and Bronchodilator Response in African-American and Hispanic Children and Adolescents with Asthma. Chest, 2015, doi:10.1378/chest.14-2689.
- [23] Spathopoulos D, Paraskakis E, Trypsianis G, Tsalkidis A, Arvanitidou V,Emporiadou M, Bouros D, Chatzimichael A. The effect of obesity on pulmonary lung function of school aged children in Greece. Pediatr Pulmonol., 44(3):273-80, 2009.
- [24] H. Friedl and N. Tilg, "Variance estimates in logistic regression using the bootstrap," *Communications in Statistics - Theory and Methods*, vol. 24, no. 2, pp. 473–486, 1995.

- [25] T.W. Anderson and D.A. Darling, "Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes," *The Annals* of Mathematical Statistics, vol. 23, no. 2, pp. 193–212, 1952.
- [26] B. Efron and R.J. Tibshirani, "An Introduction to the Bootstrap," (Chapman & Hall, New York), 1993.
- [27] E. Chatzimichail, E. Paraskakis, and A. Rigas, "Predicting Asthma Outcome Using Partial Least Square Regression and Artificial Neural Networks," *Advances in Artificial Intelligence*, vol. 2013, Article ID 435321, 7 pages, 2013. doi:10.1155/2013/435321
- [28] Hastie Trevor, Tibshirani Robert, and Friedman Jerome, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. Stanford, California: Springer Series in Statistics, 2008.
- [29] E. Lesaffre, E. and B.D. Marx, "Collinearity in Generalized Linear Regression,"*Communications in Statistics – Theory and Methods*, vol. 22, no. 7, pp. 1933–1952, 1993.
- [30] D.A. Pierce and D.W. Schafer, "Residuals in Generalized Linear Models," *Journal of the American Statistical Association*, vol. 81, no. 396, pp. 977–986, 1986.
- [31] Collett D., Modelling Binary Data, Second Edition. Chapman and Hall, Boca Raton, 2003
- [32] D.A. Freedman, "Bootstrapping regression models," Ann. Statist., vol. 9, pp. 1218–1228, 1981.
- [33] D.R. Brillinger, K.A. Lindsay, and J.R. Rosenberg, "Combining frequency and time domain approaches to systems with multiple spike train input and output," *Biological Cybernetics*, vol. 100, pp. 459–474, 2009.
- [34] C. Porsbjerg, M.L. von Linstow, C. Ulrik, S. Nepper-Christensen, V. Backer, "Risk factors for onset of asthma: a 12-year prospective followup study," Chest, vol. 129, no. 2, pp. 309–16, 2006.
- [35] N. N. Hansel, E. C. Matsui, R. Rusher, M. C. McCormack, J. Curtin-Brosnan, R. D. Peng, D. Mazique, P. N. Breysse, G. B. Diette, "Predicting future asthma morbidity in preschool inner-city children," Journal of Asthma, vol. 48, no.8, pp. 797–803, 2011.
- [36] A. Bush, "Diagnosis of asthma in children under five," Prim Care Respir J, vol. 16, pp. 7–15, 2007.
- [37] D. Firth, J. Glosup, and D.V. Hinkley, "Model Checking with nonparametric curves," Biometrica, vol. 78(2), pp. 245-252, 1991.