
 

 

 

Abstract—The purpose of this paper is to investigate the 

important role of the ridge parameter in a logistic regression model 

by comparing several different ridge parameters. These are applied in 

the study of an asthma persistent prediction problem. High 

collinearity among the explanatory variables leads to the use of a 

logistic ridge regression model in order to obtain better predictions. 

The use of different ridge parameters results to different logistic ridge 

regression models which predict asthma with different accuracies, as 

far as positive and negative predictive values are concerned. 

Additionally, the most interesting conclusion in using different ridge 

parameters for constructing the logistic ridge regression model, is the 

existence of different factors which are statistically significant, 

making the asthma persistence prediction problem more complex. 

For the evaluation of the model, a method which combines 

bootstrapping and randomized quantile residuals of the estimated 

models is used. 

 

Keywords—Asthma outcome, Multicollinearity, Logistic Ridge 

regression, Ridge Parameter, Randomized Quantile Residuals, 

Bootstrap 

I. INTRODUCTION 

ulticollinearity is one of the most important matters 

when the number of the explanatory variables is large 

and the correlations between them are strong and significant. 

In order to deal with multicollinearity introduced in 1934 by 

Frisch [1] a ridge regression model may be used. Ridge 

regression [2-3] is a shrinkage technique for analyzing data 

that suffer from significant collinearity between the predictor 

variables that makes the maximum likelihood approach 

unstable because the standard errors of the estimated 

coefficients become very large. 

 The most difficult task in Ridge regression is to determine 

the ridge parameter. Hoerl and Kennard proved that when 

collinearity exists there is always a model for ridge parameter 

λ>0 for which the MSE is less than the MSE of the 
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unrestricted model [2-3]. Many articles have been proposing 

different estimates for the ridge parameter [4-13]. Although 

there are many proposals for using a ridge parameter, most of 

them are used for linear regression models.  

In [14]  the authors apply the ridge parameters proposed in 

[2] and [15] in logistic regression. Also in [16] a number of 

logistic ridge regression parameters are applied and 

investigated through a Monte Carlo simulation. In addition the 

ridge parameter can be estimated by using a cross – validation 

technique for the calculation of the minimum mean squared 

error (     ), the mean minus log-likelihood (     ) and 

the mean classification error (     ) [17].  

The variance of the estimated regression coefficients is 

calculated through a bootstrap method [18,26,32] which uses 

the randomized quantile residuals. This is necessary because 

there is extra uncertainty due to the large number of 

explanatory variables. The randomized quantile residuals 

follow the standard normal distribution and are useful in 

testing the validity of the model [19]. 

II. MATERIALS AND METHODS 

A. Clinical Data 

Data from 148 patients were gathered by the Pediatric 

Department of the University Hospital of Alexandroupolis, 

Greece during the period from 2008 to 2010. A group of 148 

patients were diagnosed for asthma and were studied 

prospectively from the 7
th

 to the 14
th

 year of age. The history 

of each case was obtained by questionnaire and 36 patients 

were removed from the study due to missing values. A 

subsequent group of 33 children was used for validation and 

predictability examination of the ridge regression models. This 

group of preschool children is used to predict asthma 

persistence in school age through logistic ridge regression 

models with different ridge parameters. The new dataset has 

18 prognostic factors which have been derived by previous 

studies [34-36] and they are described in Table I. The 18 

variables inevitably will become 23, as the factor “seasonal 

symptoms” has to become a dummy variable. The encoding of 

the prognostic factor “seasonal symptoms” is presented in 

Table II. 
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TABLE I 

Category Prognostic Factors 

Demographic 

Age, height, weight, waist‟s 

perimeter 

Bronchiolitis episodes 
Until 3rd year, between 3rd – 5th 

year 

Symptoms 

Wheezing, cough, allergic rhinitis, 
allergic conjunctivitis, dyspnea, 

congestion, runny nose, seasonal 

symptoms 

Pharmaceutical therapy 
Antileukotriene, antihistamine, 

corticosteroids inhaled 

Asthma 
Diagnosis of asthma (dependent 
variable), Treatment 

The 18 used prognostic factors. 

 

TABLE II 

The encoding of “seasonal symptoms”. 

 

 

B. Logistic Ridge Regression 

In this section the implementation of the logistic ridge 

regression is presented. 

The logistic regression model with the use of the logit link 

function is: 
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where   is the parameter vector and    is a data matrix of 

explanatory variables.  

 In order to estimate   the maximum likelihood method is 

applied. The estimates of the parameters   , j=1,…,k are 

obtained by maximizing the log – likelihood which is: 
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As it was mentioned before when multicollinearity exists, in 

order to obtain more stable parameter estimates the logistic 

ridge regression is used. In order to improve further the 

estimation procedure, a penalized likelihood function is 

implemented given by [17]: 
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where,   is a penalty term of the following form [33]: 
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It is obvious that in this approach a penalty term is included 

that contains the ridge parameter  . The penalty term improves 

the properties of the estimated parameters   in (5). The 

computation of the estimates of the penalized parameters  ̂  is 

based on the Newton – Raphson‟s iterative algorithm. In order 

to be able to use the relation (5), a transformation of the 

parameters of the unrestricted logistic model is required. 

Therefore: 

 
                                                   

where 

 

                                                

 

and     ∑    
 
            . Thus, the penalized likelihood 

function can be written as follows: 
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Applying the procedure described in [17,18] we obtain 
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where          ,      ∑   {     }
 
    and   are the 

estimated coefficients of the unrestricted model. 

C. The ridge parameter 

 When a ridge regression model is implemented, the choice 

of the ridge parameter is of great importance. The most 

classical and usually used ridge parameter is the one proposed 

by Hoerl and Kennard [2-3], 
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 is the maximum element of     , where  δ is the 

eigenvector of     ,     are the estimates of the unrestricted 

maximum likelihood and  
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Another version of the previous ridge parameter is proposed 

by [14]: 
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Moreover, two other ridge parameters discussed in [8] are 

given by: 
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(Winter) 

3 
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4 
(Spring) 

5 
(Summer) 

6  
(>2seasons) 
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Also, Alkhamisi et.al  proposed the following ridge parameter 

[12]: 
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where    are the eigenvalues of     matrix. 

 

Furthermore, one way of selecting an appropriate Ridge 

Parameter is the process of Cross Validation. In this direction 

it is possible to perform an estimate of the mean squared error 

of the cross validation set, which can be minimized to obtain 

the Ridge parameter. The prediction errors that are widely 

used in accordance with [17], are: 

 

(a) The mean classification error 
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where if the proposition inside [ ] is true then it takes the value 

1 and if it is false takes the value 0. 

 

(b) The mean squared error 
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(c) and the mean minus log – likelihood 
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D. Residuals and bootstrapping 

A usual problem that occurs in logistic regression is the 

validity examination of the model based on the residuals. In 

the case of logistic regression with binary response, the 

Pearson residuals which are defined by          

 ̂   √ ̂     ̂            and the deviance residuals 

which are defined by,        {    ̂ } are far from normal 

and as a result are not capable to give us any information 

about the validity of the model. More details about the 

residuals and their use are presented in [30].  

For that reason the randomized quantile residuals proposed 

by Dunn and Smith are used [19]. The randomized quantile 

residuals are defined as follows: 

Let                   ∑   
       

   |  |
    be the 

cumulative binomial distribution of the ith binary response, 

and |  | is the greatest integer less than or equal to   , i.e. the 

„floor‟ under   . Let also  

 

          
      ̂  and          ̂   

 

Then the randomized quantile residuals for a logistic 

regression model are defined by 

 

         { }                                        

where      is the cumulative distribution function of the 

standard normal, and    is a uniform random variable on the 

interval       ]. 
These residuals [19] can be used for any discrete distributed 

response. Thus, the validity of the model can now be tested by 

using goodness of fit tests for the normality of      . A very 

commonly used method to test the null hypothesis that the 

randomized quantile residuals follow a standard normal 

distribution i.e.             is the Anderson – Darling test 

[25]. 

Also the Q-Q plot of the randomized quantile can be a mean 

for checking the validity of the model. A method for 

constructing pointwise        rejection regions around the 

Q-Q plot of any random sample is proposed in [18] by using 

bootstrapping.  

III. RESULTS 

The correlations between some variables are very strong 

and statistically significant, indicating the presence of 

multicollinearity. The condition indices also reveal that 

multicollinearity exists [18,29]. 

Thus the logistic ridge regression is applied for a ridge 

parameter λ=0 to λ=1. Furthermore it is important to mention 

that when collinearity exists there is always a model for λ>0 

for which the MSE is less than the MSE of the unrestricted 

model [3,17]. 

For the calculation of p – values the following statistic is 

used: 

   
 ̂ 

 

  ( ̂ 
 )

                                           

 

The standard errors are obtained by a bootstrap procedure 

using the randomized quantile residuals that is described in 

[18]. Thereafter we assume that under the null hypothesis 

          to test the significance of the estimated ridge 

coefficients [20]. 

The results of using different approaches for the ridge 

parameter calculation are shown in TABLE III-X (Appendix). 

Now, we would like to examine the performance of these 

models in new real data. These new data refer to 33 new 

patients and were collected also by questionnaire in a period 

after 2010. 

Based on the equation: 

 

 ̂      
 

              ̂      
   

 

a prediction for the diagnosis of a new patient can be found. 

The positive predicted value, the negative predicted value and 

the accuracy of this model are estimated using false positive 

(FP), false negative (FN), true positive (TP), and true negative 

(TN) values. The positive predictive value (PPV) of a test is 

defined as the proportion of people with a positive test result 

who actually have the disease. The negative predictive value 

(NPV) of a test is the proportion of people with a negative test 
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result who do not have disease [21]. The test set consists of the 

new 33 patients and the 11 patients which were used for the 

cross – validation test. 

                    
   

       

      

                    
   

       

                 

         
       

               

      

All the above are statistical measures of the performance of a 

binary classification test. 

Those measures are very useful and give us important 

information about a patient. For example if a PPV of a disease 

prediction model is 90% then a patient with a positive test has 

a chance of 90% having the particular disease [21]. 

 

In the following TABLE XI are described all the statistical 

measures for the performance of the models including the 

mean squared error of the data that were used for fitting the 

models. 

 

TABLE XI 

 

Ridge 

Parameters 

MSE Accuracy 

(%)  

PPV 

(%) 

NPV 

(%) 

AIC 

  =0.000456 0.0813 72.73 81.82 63.64 574.5633 

  =0.0159      0.0857 86.36 88.46 83.33 319.4652 

  =0.0018 0.0849 75 82.60 66.67 487.6483 

  =0.012 0.0847 77.27 83.33 70 512.1119 

  =0.0541 0.0846 84.09 88 78.95 409.9047 

  =0.0261 0.0884 93.18 96.15 88.89 276.1508 

  =0.0160 0.0850 86.36 88.46 83.33 341.1905 

  =0.0123 0.0858 86.36 88.46 83.33 319.0086 

 

 

 

The results show that the most significant explanatory 

variable that appears in all models is the waist‟s perimeter. 

Waist‟s perimeter is studied and also presented as a significant 

variable in [22-23] and that enhances the fact that there is a 

strong relation between asthma and obesity. 

One other interesting matter is that the model of TABLE III 

(Appendix) has many different significant variables compared 

to the other models but it also has the smallest predictive 

accuracy. That is explained if we perform a validity test using 

the QQ-plot of the randomized quantile residuals with the use 

of the method described in [18].  This method uses the 

bootstrap resampling of randomized quantile residuals so we 

can calculate the 5% rejection regions around the QQ-plot. 

This is implemented because the large number of the 

estimated parameters adds extra uncertainty. 

More specific, we obtain estimates of  ̂ , and randomized 

quantile residuals with the use of logistic ridge regression. 

Then we apply the bootstrap 2000 times in randomized 

quantile residuals and then we apply again the logistic ridge 

regression with an assumption made in [24,37] 2000 times 

using as response the summations  ̂       
 . Finally from the 

2000 sets of estimated response variables  ̂            , 

we calculate 2000 new sets of randomized quantile residuals 

which allows us to construct        rejection regions 

around the Q-Q plot of the randomized quantile residuals. 

Here it is important to mention that the standard errors of 

the estimated coefficients  ̂  were obtained by finding the 

standard deviation of the 2000 bootstrapped samples 

 ̂ 
     ̂  

 . 

 

 
Fig. 1 QQ Plot of randomized quantile residuals of LRR model with 

the use of           versus Standard Normal 

 

 
Fig. 2 QQ Plot of randomized quantile residuals of LRR model with 

the use of          versus Standard Normal 

 

Figures 1 and 2 show the Q-Q plot of the randomized 

quantile residuals of the fitted logistic ridge model with      

and     denoted both with +. The 5% rejection regions were 

computed by the procedure described above after 2000 

bootstrap simulations. It is observed that 7 (6.93%)  and 9 

(8.91%) of the 101 residuals lie outside the 5% rejection 

regions respectively and generally the Q-Q plots present some 

deviations from normality.  

In addition, the Anderson-Darling test gives the value 

1.0559 with a p-value 0.0084 and 1.0738 with a p-value 

0.0076 respectively. Therefore, the null hypothesis that the 

randomized quantile residuals follow an approximate standard 

normal distribution must be rejected. This suggests that the 
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fitted models are invalid. The rest of the models are valid and 

this is proved with the use of the same procedure for checking 

the validity.  

It is also interesting the fact that the models which have 

smaller MSE have larger accuracy and the opposite. This is 

probably a result of overfitting. This is also the reason that the 

models with smaller MSEs are not valid according to our 

validity test with the use of randomized quantile residuals. 

 

Finally we may use the Akaike Information Criterion in order 

to determine which model is the best for asthma persistence 

prediction. AIC is defined as [28]: 

 

                     
 

where RSS is the residual sum of squares and    is defined as: 

 

   ∑
  

 

  
   

 

   

 

 

where               is the vector of singular values after the 

singular value decomposition (SVD) of   [28] 

 

The Akaike Information criterion of each model is presented 

in TABLE XI. 

 

IV. CONCLUSION 

A complete ridge regression study demands the use of many 

different ridge parameters and a number of criteria in order to 

obtain the best model. In this paper the proposed models for 

ridge parameters                 exhibit high accuracy and 

small mean squared errors. The best model according to four 

different criteria is the one in which the ridge parameter is 

calculated by minimizing the mean squared error through 

cross – validation. The values of the four criteria are: 

                 

             
                

            . 

For future research, a very interesting study would be to 

make a comparison of the ridge regression models for asthma 

prediction, with other methods used to deal with 

multicollinearity such as partial least squares regression, 

principal component analysis and Bayesian logistic regression. 

A comparison with artificial intelligence methods such as 

artificial neural networks [27] can also be included. 

 
 

 

V.APPENDIX 

 

TABLE III 

Covariates 

Estimates 

Parameter 

Estimates 

Standard 

Errors 
   

p-

values 

Age -0.1216 0.1825 -0.6664 0.5052 

Treatment -0.5972 0.9194 -0.6496 0.5160 

Covariates 

Estimates 

Parameter 

Estimates 

Standard 

Errors 
   

p-

values 

Corticosteroids 

inhaled 
1.2599 0.9495 1.3269 0.1845 

Antileukotriene -0.5388 1.1484 -0.4692 0.6390 

Antihistamine -1.9814 1.2809 -1.5469 0.1219 

Height -3.1837 2.1750 -1.4638 0.1433 

Weight 0.1107 0.0394 2.8084 0.0050 

Waist‟s perimeter -0.1331 0.0348 -3.8224 0.0001 

Allergic rhinitis 0.7402 1.0964 0.6751 0.4996 

Allergic 
conjunctivitis 

-2.8051 1.3000 -2.1579 0.0309 

Runny nose 2.4870 1.1636 2.1373 0.0326 

Congestion 0.9241 1.0703 0.8633 0.3879 

Cough 1.4526 1.1453 1.2683 0.2047 

Wheezing 2.4733 1.1754 2.1042 0.0354 

Dyspnea 1.1429 1.0215 1.1189 0.2632 

Seasonal 

symptoms (none) 
5.7369 2.1801 2.6315 0.0085 

Seasonal 

symptoms 
(winter) 

7.7949 2.3360 3.3369 0.0008 

Seasonal 

symptoms 
(autumn) 

5.2621 2.3813 2.2098 0.0271 

Seasonal 

symptoms (spring) 
8.5665 2.4856 3.4464 0.0006 

Seasonal 

symptoms 

(summer) 
4.2801 2.5134 1.7029 0.0886 

Seasonal 

symptoms (>2 

seasons) 
6.9742 2.3594 2.9559 0.0031 

Bronchiolitis 
episodes until 3rd 

year 
-0.1539 0.1561 -0.9858 0.3242 

Bronchiolitis 
episodes b/w 3rd – 

5th year 
0.2086 0.1350 1.5447 0.1224 

TABLE III: The logistic ridge regression model for    which is equal 

to 0.000456. 

 
TABLE IV 

Covariates 

Estimates 

Parameter 

Estimates 

Standard 

Errors 
   

p-

values 

Age 0.0250 0.1502 0.1665 0.8678 

Treatment 0.4897 0.6046 0.8099 0.4180 
Corticosteroids 

inhaled 
0.9499 0.6217 1.5279 0.1265 

Antileukotriene -0.4523 0.8828 -0.5123 0.6084 

Antihistamine -0.0078 0.9693 -0.0081 0.9936 

Height 0.7008 1.2574 0.5573 0.5773 

Weight -0.0010 0.0319 -0.0301 0.9760 

Waist‟s perimeter -0.0759 0.0288 -2.6364 0.0084 

Allergic rhinitis -0.0272 0.8375 -0.0325 0.9741 

Allergic 
conjunctivitis 

-0.9199 0.9208 -0.9991 0.3177 

Runny nose 0.6202 0.8670 0.7154 0.4744 

INTERNATIONAL JOURNAL OF BIOLOGY AND BIOMEDICAL ENGINEERING Volume 10, 2016

ISSN: 1998-4510 5



 

 

Covariates 

Estimates 

Parameter 

Estimates 

Standard 

Errors 
   

p-

values 

Congestion 1.1530 0.8020 1.4378 0.1505 

Cough 1.7631 0.8653 2.0375 0.0416 

Wheezing 1.7896 0.8625 2.0750 0.0380 

Dyspnea 1.1127 0.8009 1.3893 0.1647 

Seasonal 

symptoms (none) 
1.4128 1.2993 1.0874 0.2769 

Seasonal 

symptoms 

(winter) 
1.4186 1.4910 0.9514 0.3414 

Seasonal 

symptoms 

(autumn) 
0.3989 1.4973 0.2664 0.7899 

Seasonal 
symptoms 

(spring) 
1.2300 1.6099 0.7640 0.4449 

Seasonal 

symptoms 

(summer) 
0.2360 1.6090 0.1467 0.8834 

Seasonal 
symptoms (>2 

seasons) 
1.4584 1.4819 0.9842 0.3250 

Bronchiolitis 
episodes until 3rd 

year 
-0.2146 0.1337 -1.6047 0.1086 

Bronchiolitis 
episodes b/w 3rd 

– 5th year 
0.1461 0.1137 1.2852 0.1987 

TABLE IV: The logistic ridge regression model for    which is equal 

to 0.0159. 

 

 

TABLE V 

Covariates 

Estimates 

Parameter 

Estimates 

Standard 

Errors 
   p-values 

Age -0.1124 0.2116 -0.5315 0.5951 

Treatment -0.1510 1.3318 -0.1134 0.9097 

Corticosteroids 
inhaled 

1.2057 1.4395 0.8376 0.4023 

Antileukotriene -0.6129 1.3353 -0.4590 0.6463 

Antihistamine -1.4135 1.5358 -0.9204 0.3574 

Height -0.1232 3.1444 -0.0392 0.9687 

Weight 0.0628 0.0437 1.4396 0.1500 

Waist‟s perimeter -0.1193 0.0372 -3.2080 0.0013 

Allergic rhinitis 0.4453 1.3051 0.3412 0.7329 

Allergic 

conjunctivitis 
-2.0926 1.5382 -1.3604 0.1737 

Runny nose 1.8047 1.3142 1.3732 0.1697 

Congestion 1.0902 1.1989 0.9093 0.3632 

Cough 1.7637 1.3620 1.2950 0.1953 

Wheezing 2.2655 1.3315 1.7015 0.0888 

Dyspnea 0.9703 1.1591 0.8371 0.4025 

Seasonal 

symptoms (none) 
2.8558 2.8203 1.0126 0.3113 

Seasonal 

symptoms (winter) 
4.0640 2.8922 1.4051 0.1600 

Seasonal 
symptoms 

(autumn) 
2.0847 3.2066 0.6501 0.5156 

Covariates 

Estimates 

Parameter 

Estimates 

Standard 

Errors 
   p-values 

Seasonal 

symptoms (spring) 
4.6342 3.0200 1.5345 0.1249 

Seasonal 
symptoms 

(summer) 
1.2966 3.0580 0.4240 0.6716 

Seasonal 
symptoms (>2 

seasons) 
3.6561 2.9673 1.2321 0.2179 

Bronchiolitis 

episodes until 3rd 
year 

-0.1791 0.1597 -1.1214 0.2621 

Bronchiolitis 

episodes b/w 3rd – 
5th year 

0.1968 0.1389 1.4172 0.1564 

TABLE V: The logistic ridge regression model for    which is equal to 

0.0018. 

 

 

TABLE VI 

Covariates 

Estimates 

Parameter 

Estimates 

Standard 

Errors 
   p-values 

Age -0.1227 0.2039 -0.6015 0.5475 

Treatment -0.3004 1.4298 -0.2101 0.8336 

Corticosteroids 

inhaled 
1.2330 1.5874 0.7768 0.4373 

Antileukotriene -0.5896 1.3675 -0.4312 0.6663 

Antihistamine -1.6547 1.7057 -0.9701 0.3320 

Height -0.6974 3.1056 -0.2245 0.8223 

Weight 0.0760 0.0465 1.6328 0.1025 

Waist‟s perimeter -0.1243 0.0394 -3.1576 0.0016 

Allergic rhinitis 0.5572 1.3072 0.4262 0.6699 

Allergic 

conjunctivitis 
-2.3310 1.5145 -1.5391 0.1238 

Runny nose 2.0192 1.3832 1.4598 0.1443 

Congestion 1.0387 1.2286 0.8454 0.3979 

Cough 1.6524 1.2987 1.2723 0.2033 

Wheezing 2.3673 1.3991 1.6921 0.0906 

Dyspnea 0.9937 1.2202 0.8144 0.4154 

Seasonal symptoms 

(none) 
3.4249 2.9862 1.1469 0.2514 

Seasonal symptoms 
(winter) 

4.9009 3.1197 1.5709 0.1162 

Seasonal symptoms 

(autumn) 
2.7220 3.4452 0.7901 0.4295 

Seasonal symptoms 

(spring) 
5.5520 3.1196 1.7797 0.0751 

Seasonal symptoms 
(summer) 

1.8582 3.2042 0.5799 0.5620 

Seasonal symptoms 

(>2 seasons) 
4.3439 3.0055 1.4453 0.1484 

Bronchiolitis 
episodes until 3rd 

year 
-0.1722 0.1712 -1.0059 0.3145 

Bronchiolitis 
episodes b/w 3rd – 

5th year 
0.2018 0.1475 1.3678 0.1714 

TABLE VI: The logistic ridge regression model for    which is equal 

to 0.012. 
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TABLE VII 

Covariates 

Estimates 

Parameter 

Estimates 

Standard 

Errors 
   

p-

values 

Age -0.0540 0.2041 -0.2645 0.7914 

Treatment 0.2506 1.2937 0.1937 0.8464 

Corticosteroids 
inhaled 

1.0861 1.4304 0.7593 0.4477 

Antileukotriene -0.6135 1.3484 -0.4550 0.6491 

Antihistamine -0.5924 1.4285 -0.4147 0.6784 

Height 0.6537 3.1017 0.2108 0.8331 

Weight 0.0278 0.0470 0.5926 0.5534 

Waist‟s perimeter -0.0999 0.0394 -2.5339 0.0113 

Allergic rhinitis 0.1472 1.2997 0.1132 0.9098 

Allergic 

conjunctivitis 
-1.4431 1.5195 -0.9497 0.3423 

Runny nose 1.1841 1.3081 0.9052 0.3654 

Congestion 1.1818 1.1882 0.9946 0.3199 

Cough 1.9106 1.4340 1.3324 0.1827 

Wheezing 1.9913 1.3684 1.4552 0.1456 

Dyspnea 0.9835 1.1951 0.8230 0.4105 

Seasonal symptoms 
(none) 

1.9139 2.9094 0.6578 0.5106 

Seasonal symptoms 

(winter) 
2.4033 2.9500 0.8147 0.4153 

Seasonal symptoms 

(autumn) 
0.9678 3.3513 0.2888 0.7727 

Seasonal symptoms 

(spring) 
2.5807 3.1280 0.8250 0.4094 

Seasonal symptoms 

(summer) 
0.4833 3.1612 0.1529 0.8785 

Seasonal symptoms 
(>2 seasons) 

2.3315 3.0638 0.7610 0.4467 

Bronchiolitis 

episodes until 3rd 
year 

-0.2015 0.1689 -1.1927 0.2330 

Bronchiolitis 

episodes b/w 3rd – 
5th year 

0.1767 0.1427 1.2381 0.2157 

TABLE VII: The logistic ridge regression model for    which is equal 

to 0.0541. 

 

TABLE VIII 

Covariates 
Estimates 

Parameter 

Estimates 

Standard 

Errors 
   p-values 

Age 0,059821 0,1221 0,4900 0,6241 

Treatment 0,531238 0,4817 1,1028 0,2701 

Corticosteroids inhaled 0,889768 0,4942 1,8002 0,0718 

Antileukotriene -0,32763 0,5650 -0,5799 0,5620 

Antihistamine 0,111097 0,6674 0,1665 0,8678 

Height 0,600211 0,7353 0,8163 0,4143 

Weight -0,01082 0,0276 -0,3925 0,6947 

Waist‟s perimeter -0,06579 0,0216 -3,0455 0,0023 

Allergic rhinitis -0,06907 0,5733 -0,1205 0,9041 

Allergic conjunctivitis -0,72709 0,5819 -1,2494 0,2115 

Runny nose 0,429069 0,6068 0,7071 0,4795 

Covariates 
Estimates 

Parameter 

Estimates 

Standard 

Errors 
   p-values 

Congestion 1,096703 0,5424 2,0220 0,0432 

Cough 1,640577 0,5871 2,7942 0,0052 

Wheezing 1,719255 0,5874 2,9271 0,0034 

Dyspnea 1,18429 0,5962 1,9865 0,0470 

Seasonal symptoms 

(none) 
1,26928 0,7360 1,7246 0,0846 

Seasonal symptoms 
(winter) 

1,148824 0,8505 1,3507 0,1768 

Seasonal symptoms 

(autumn) 
0,273617 0,8385 0,3263 0,7442 

Seasonal symptoms 
(spring) 

0,856916 0,9088 0,9429 0,3457 

Seasonal symptoms 

(summer) 
0,216933 0,8830 0,2457 0,8059 

Seasonal symptoms 

(>2 seasons) 
1,15655 0,8174 1,4149 0,1571 

Bronchiolitis episodes 
until 3rd year 

-0,21639 0,1089 -1,9866 0,0470 

Bronchiolitis episodes 

b/w 3rd – 5th year 
0,132402 0,0932 1,4212 0,1553 

TABLE VIII: The parameter estimates of the logistic ridge model for 

the minimum MSEcv. The minimum MSEcv is derived for   =0.0261 and 

is equal to 0.034. 

 

 

TABLE IX 

Covariates 

Estimates 

Parameter 

Estimates 

Standard 

Errors 
   p-values 

Age 0.0062 0.1357 0.0460 0.9633 

Treatment 0.4527 0.7109 0.6368 0.5243 

Corticosteroids 

inhaled 
0.9812 0.7369 1.3315 0.1830 

Antileukotriene -0.5055 0.8132 -0.6216 0.5342 

Antihistamine -0.1040 0.8708 -0.1195 0.9049 

Height 0.7314 1.3985 0.5230 0.6010 

Weight 0.0050 0.0302 0.1646 0.8693 

Waist‟s perimeter -0.0815 0.0262 -3.1141 0.0018 

Allergic rhinitis 0.0021 0.7788 0.0027 0.9978 

Allergic 
conjunctivitis 

-1.0293 0.8743 -1.1774 0.2391 

Runny nose 0.7381 0.8086 0.9128 0.3613 

Congestion 1.1721 0.7242 1.6184 0.1056 

Cough 1.8179 0.8107 2.2423 0.0249 

Wheezing 1.8300 0.8252 2.2176 0.0266 

Dyspnea 1.0757 0.7490 1.4362 0.1509 

Seasonal 

symptoms (none) 
1.5054 1.3621 1.1052 0.2691 

Seasonal 
symptoms (winter) 

1.5978 1.4433 1.1070 0.2683 

Seasonal 

symptoms 

(autumn) 
0.4939 1.5525 0.3181 0.7504 

Seasonal 

symptoms (spring) 
1.4782 1.5721 0.9403 0.3471 

Seasonal 
symptoms 

(summer) 
0.2629 1.5506 0.1696 0.8654 
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Covariates 

Estimates 

Parameter 

Estimates 

Standard 

Errors 
   p-values 

Seasonal 

symptoms (>2 

seasons) 
1.6343 1.4832 1.1018 0.2705 

Bronchiolitis 

episodes until 3rd 

year 
-0.2127 0.1269 -1.6769 0.0936 

Bronchiolitis 

episodes b/w 3rd – 

5th year 
0.1537 0.1102 1.3940 0.1633 

TABLE ΙΧ: The parameter estimates of the logistic ridge model for 

the minimum MMLcv. The minimum MMLcv is derived for   =0.0160 

and is equal to 0.1693. 

 

 

TABLE X 

Covariates 

Estimates 

Parameter 

Estimates 

Standard 

Errors 
   p-values 

Age -0.1216 0.1771 0.1440 0.8855 

Treatment -0.5972 0.9529 0.5148 0.6067 

Corticosteroids 
inhaled 

1.2599 1.0058 0.9436 0.3454 

Antileukotriene -0.5388 1.0843 -0.4157 0.6777 

Antihistamine -1.9814 1.1873 -0.0047 0.9963 

Height -3.1837 2.3980 0.2918 0.7704 

Weight 0.1107 0.0412 -0.0271 0.9784 

Waist‟s perimeter -0.1331 0.0333 -2.2774 0.0228 

Allergic rhinitis 0.7402 1.0491 -0.0266 0.9788 

Allergic 

conjunctivitis 
-2.8051 1.1948 -0.7676 0.4427 

Runny nose 2.4870 1.0590 0.5828 0.5600 

Congestion 0.9241 0.9924 1.1612 0.2456 

Cough 1.4526 1.0918 1.6134 0.1067 

Wheezing 2.4733 1.0963 1.6315 0.1028 

Dyspnea 1.1429 0.9810 1.1354 0.2562 

Seasonal 
symptoms (none) 

5.7369 2.3044 0.6121 0.5405 

Seasonal 

symptoms (winter) 
7.7949 2.3937 0.5908 0.5547 

Seasonal 
symptoms 

(autumn) 
5.2621 2.6060 0.1522 0.8790 

Seasonal 
symptoms (spring) 

8.5665 2.5260 0.4845 0.6280 

Seasonal 

symptoms 
(summer) 

4.2801 2.5459 0.0925 0.9263 

Seasonal 

symptoms (>2 
seasons) 

6.9742 2.4144 0.6022 0.5471 

Bronchiolitis 

episodes until 3rd 
year 

-0.1539 0.1495 -1.4359 0.1510 

Bronchiolitis 

episodes b/w 3rd – 
5th year 

0.2086 0.1260 1.1582 0.2468 

TABLE Χ: The parameter estimates of the logistic ridge model for the 

minimum MCEcv. The minimum MCEcv is derived for   = 0.0123 and is 

equal to 0. 
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